Unidade de medida

Aspeto mover para a barra lateral ocultar

A unidade de medida é uma convenção usada para representar dimensões (igualmente a um objeto que é algo diferente da palavra usada para descrevê-lo); unidade dimensional; como por exemplo, o metro é uma unidade para medir um comprimento L, não o comprimento numérico em si.

História

Sistemas de unidades são convencionais, dependendo de definições derivadas da nossa experiência local do universo. Por exemplo, o metro foi definido originalmente como uma certa fração do comprimento dos meridianos terrestres e, embora essa definição tenha sido refinada posteriormente, fica claro que é de natureza arbitrária.

Ao longo do tempo, foi registrado o uso de diversas formas de medidas utilizadas pelos povos antigos. Os egípcios, por exemplo, utilizavam o palmo e o cúbito há 4 mil anos. Porém, nos diferentes territórios e países, os meios e as medidas usadas no dia a dia eram diferentes, assim dificultando o comércio internacional. Com o passar do tempo, e com a evidente necessidade de facilitar o comércio entre as pessoas e as nações, em 1960 foi criado o Sistema Internacional de Unidades (SI) a partir do sistema metro-quilograma-segundo, depois de inúmeras convenções internacionais com representantes de diversos países.

Análise dimensional do MLT e FLT

A Análise dimensional das grandezas dos sistemas MLT e FLT

Sistema MLT: mass (massa, M); length (comprimento, L); time (tempo, T).

Sistema FLT: force (força, F); length (comprimento, L); time (tempo, T).

Grandeza
Unidade SI MLT FLT
Comprimento (L) m L {\displaystyle L} L {\displaystyle L}
Aceleração (a) m / s 2 {\displaystyle m/s^{2}} L / T 2 {\displaystyle L/T^{2}} L / T 2 {\displaystyle L/T^{2}}
Massa (m) kg M {\displaystyle M} F L / T 2 {\displaystyle FL/T^{2}}
Força (F) N = ( k g . m ) / s 2 {\displaystyle N=(kg.m)/s^{2}} M L / T 2 {\displaystyle ML/T^{2}} F {\displaystyle F}
Velocidade (V) m / s {\displaystyle m/s} L / T {\displaystyle L/T} L / T {\displaystyle L/T}
Vazão (Q) m 3 / s {\displaystyle m^{3}/s} L 3 / T {\displaystyle L^{3}/T} L 3 / T {\displaystyle L^{3}/T}
Pressão (P) N / m 2 {\displaystyle N/m^{2}} M / L T 2 {\displaystyle M/LT^{2}} F / L 2 {\displaystyle F/L^{2}}

Sistema Internacional de Unidades (SI)

O Sistema Internacional de Unidades, foi criado em 1960, na 11ª Conferência Geral de Pesos e Medidas (CGPM), com o objetivo de padronizar as unidades usadas por todos os países, para que fosse possível alcançar maior facilidade em efetuar as transações comerciais.

Bases

Com isso, o SI definiu um grupo base de grandezas independentes e unidades de medida, chamadas de Grandezas Bases, sendo esses:

Grandeza Unidade Símbolo
Comprimento metro m
Massa quilograma kg
Tempo segundo s
Corrente elétrica ampere A
Temperatura termodinâmica kelvin K
Quantidade de substância mol mol<span class="citation wikicite" id="endnote_No Brasil, chama-se-a quantidade de matéria e tanto seu nome quanto o símbolo de sua unidade é o "mol" (substantivo masculino). O plural do termo é dicionarizado (Aurélio, Houaiss, Michaelis) como "mols" (grafia também adotada pelo INMETRO), embora o Vocabulário Ortográfico da Língua Portuguesa da ABL, na consistência vernacular, registre apenas as grafias "móis" ou "moles" como plural de "mol". Em Portugal (e nos países que adotam o português europeu, essa grandeza é dita "quantidade de substância" e tem por unidade a "mole" (substantivo feminino, plural "moles")."> "moles").|↑]]
Intensidade luminosa candela cd

Derivadas

A partir das Grandezas Bases são obtidas as demais grandezas, denominadas Grandezas Derivadas.

Grandeza Unidade Símbolo Dimensional analítica Dimensional sintética
Ângulo plano radiano rad 1 m/m
Ângulo sólido esferorradiano1 sr 1 m²/m²
Atividade catalítica katal kat mol/s ---
Atividade radioativa becquerel Bq 1/s ---
Capacitância farad F A²·s²·s²/(kg·m²) A·s/V
Carga elétrica coulomb C A·s ---
Condutância siemens S A²·s³/(kg·m²) A/V
Dose absorvida gray Gy m²/s² J/kg
Dose equivalente sievert Sv m²/s² J/kg
Energia joule J kg·m²/s² N·m
Fluxo luminoso lúmen lm cd cd·sr
Fluxo magnético weber Wb kg·m²/(s²·A) V·s
Força newton N kg·m/s² ---
Frequência hertz Hz 1/s ---
Indutância henry H kg·m²/(s²·A²) Wb/A
Intensidade de campo magnético tesla T kg/(s²·A) Wb/m²
Luminosidade lux lx cd/m² lm/m²
Potência watt W kg·m²/s³ J/s
Pressão pascal Pa kg/(m·s²) N/m²
Resistência elétrica ohm Ω kg·m²/(s³·A²) V/A
Temperatura em Celsius grau Celsius °C --- ---
Tensão elétrica volt V kg·m²/(s³·A) W/A

Unidades em uso

Adimensional

Existem grandezas que não apresentam unidades de medida, as Grandeza Adimensional, resultados da divisão entre duas grandezas iguais, como por exemplo índice de refração (razão entre duas velocidades).

De contagem

Existem grandezas que não são derivadas das Grandezas de Base, como por exemplo o número de moléculas de uma substância determinadas por meio de contagem, chamadas Grandezas de Contagem.

Ver também

Notas

Referências

  1. a b Trancanelli, Diego; Trancanelli, Diego (1 de janeiro de 2016). «Grandezas físicas e análise dimensional: da mecânica à gravidade quântica». Revista Brasileira de Ensino de Física (em Portuguese) (2). doi:10.1590/1806-9126-RBEF-2015-0003. Consultado em 4 de março de 2021  !CS1 manut: Língua não reconhecida (link)
  2. a b «O que muda no Sistema Internacional de Unidades, quilograma e metro». Instituto de Física da Universidade de São Paulo. Consultado em 22 de novembro de 2022 
  3. «Hidrabook 2016». docentes.esalq.usp.br. Consultado em 27 de março de 2018 
  4. a b CAETANO, JORDANA MOURA. SISTEMAS DE UNIDADES (PDF). : PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS 
  5. «Hidrabook 2016». docentes.esalq.usp.br. Consultado em 27 de março de 2018 
  6. a b «O que muda no Sistema Internacional de Unidades, quilograma e metro». Instituto de Física da Universidade de São Paulo. Consultado em 22 de novembro de 2022 

Bibliografia

Ligações externas