No mundo atual, Álgebra de Lie ganhou grande relevância em diversas áreas. Seja a nível pessoal, profissional ou social, Álgebra de Lie tornou-se um tema de constante interesse e discussão. Seu impacto é notável em diversas áreas, da tecnologia à política, passando pela cultura e pelas relações interpessoais. É por isso que é essencial analisar e compreender a influência que Álgebra de Lie tem na nossa sociedade atual. Neste artigo exploraremos diferentes perspectivas e aspectos relacionados a Álgebra de Lie, a fim de esclarecer sua importância e o papel que desempenha em nosso dia a dia.
Teoria de grupos → Grupos de Lie Grupos de Lie |
---|
![]() |
Em álgebra, uma álgebra de Lie é uma estrutura algébrica cujo principal uso está no estudo dos grupos de Lie e das variedades diferenciáveis. As álgebras de Lie foram introduzidas como ferramenta para o estudo das rotação infinitesimais. O termo "Álgebra de Lie" é uma referência a Sophus Lie, e foi cunhado pelo matemático Hermann Weyl na década de 1930.
Uma álgebra de Lie é um tipo de álgebra sobre um corpo; é um espaço vetorial sobre um corpo F juntamente com uma operação binária (, chamada de comutador, ou colchete de Lie), que satisfaz os seguintes axiomas:
Para qualquer álgebra associativa A com multiplicação *, pode-se construir uma álgebra de Lie L(A). Como espaço vetorial, L(A) coincide com A. O colchete de Lie de L(A) é definido como sendo o seu comutador em A:
A associatividade da multiplicação * em A implica a identidade de Jacobi para o comutador em L (A). Em particular, a álgebra associativa das matrizes n' × n sobre um corpo F dá origem ao grupo linear geral A álgebra associativa A é chamada de uma álgebra envolvente da álgebra de Lie L (A).
É sabido que cada álgebra de Lie pode ser mergulhada em uma álgebra que é definida, desta forma, a partir de uma álgebra associativa.
A definição geral é técnica, mas no caso dos grupos clássicos de matrizes reais, ela pode ser formulada via a aplicação exponencial. A álgebra de Lie consiste das matrizes X da forma :: : para todos t's reais. A álgebra de Lie de é dada pelo comutador de tais matrizes. Como um exemplo concreto, considere o grupo linear especial SL(n,R), consistindo das matrizes n × n com entradas reais e determinante 1. Este um grupo clássico, e a sua álgebra de Lie tem como elementos todas as matrizes n × n reais e com Traço zero.
A correspondência entre álgebras de Lie e grupos de Lie é utilizada de diversas maneiras, incluindo-se na elaboração da lista dos grupos de Lie simples e na teoria da representação dos grupos de Lie. Toda representação de uma álgebra de Lie é levantada de forma única para uma representação do grupo de Lie conexo e simplesmente conexo correspondente. De forma recíproca, toda representação de um grupo de Lie induz uma representação da sua álgebra de Lie; suas representações estão biunivocamente correspondidas.