Subgrupo

No mundo de hoje, Subgrupo tornou-se um tema de grande relevância e interesse. Seja pelo seu impacto na sociedade, na economia, na política ou no quotidiano das pessoas, Subgrupo tem conseguido captar a atenção de diferentes setores e públicos. Com o passar do tempo, o interesse em Subgrupo aumentou, gerando intermináveis ​​debates, pesquisas e opiniões conflitantes. Neste contexto, é essencial compreender plenamente o que é Subgrupo, quais as suas implicações e como afecta a sociedade como um todo. Portanto, este artigo abordará o tema Subgrupo de forma ampla e detalhada, a fim de oferecer uma visão ampla e completa de sua importância e impacto no mundo atual.

Definição

Em teoria dos grupos, um subgrupo de um grupo G é um subconjunto H de G que também seja um grupo para a mesma operação. Sejam um grupo e um subconjunto não vazio de . Dizemos que é um subgrupo de se é fechado para a operação de e é um grupo. Notação:

Exemplos

  • Os subgrupos de são os conjuntos dos múltiplos de , para cada .
  • é um subgrupo de
  • O conjunto é um subgrupo dos ( com a multiplicação usual de números complexos..

Resultado Importante

Para verifcar se um dado subconjunto de um grupo é um subgrupo, precisamos mostrar que ele é fechado para a operação do grupo e provar as três condições da definição de grupo. Contudo a proposição abaixo facilita este trabalho.

Proposição 1: Seja um subconjunto não vazio de um grupo .Então é um subgrupo de se e somente se, para todo implica que

Propriedades hereditárias

Os grupos têm as seguintes propriedades hereditárias, isto é, se um grupo tem uma das propriedades seguintes, também os seus subgrupos a têm: