Ciclo celular

Ciclo Celular é o conjunto de fases que uma célula passa com o intuito de duplicar-se, dando origem a duas células novas. Em células eucarióticas, o ciclo celular é dividido em 3 fases principais, são elas: Intérfase; Fase mitótica (Fase M) e Citocinese. Essas fases são de suma importância para o funcionamento da célula, erros nesses processos podem acarretar na morte celular ou até no desenvolvimento de células tumorais.

Para que o ciclo seja mantido de forma organizada, a célula conta com uma maquinaria de processos regulatórios dependente da ação de ciclinas e cinase.

Esquema do ciclo celular: I=Interfase, M=Fase Mitótica. A duração da fase mitótica em relação às outras fases encontra-se exagerada.

Fases do ciclo celular

Intérfase

A Interfase é a fase mais longa do ciclo celular. Em média, a célula passa cerca de 90% do tempo em Intérfase. Nessa fase, a célula consegue nutrientes, cresce e duplica suas moléculas de DNA. Assim, prepara-se para a divisão celular.

A interfase divide-se em três fases:

As fases G e S possuem estas denominações em decorrência de abreviações do inglês - G para gap (intervalo) e S para síntese.

Fase mitótica, mitose ou cariocinese

Na Fase Mitótica ocorre a divisão nuclear (nas células eucarióticas) a partir do preparo prévio ocorrido durante a Intérfase. É um processo contínuo, no entanto distinguem-se fases:

Corresponde à divisão citoplasmática e, consequentemente, à individualização das duas células-filhas; A citocinese difere conforme a célula for animal ou vegetal.

No fim da mitose da célula animal formam-se, na zona do plano equatorial, um anel contrátil de filamentos proteicos que, na citocinese, contraem-se e puxam a Membrana plasmática para dentro até que as duas células-filhas se separam. Assim podemos dizer que a citocinese animal é centrípeta porque ocorre de fora para dentro.

Na célula vegetal a parede celular não permite o estrangulamento do citoplasma; em vez disso é formada na região equatorial uma nova parede celular. Para isso vesículas provenientes do complexo de Golgi alinham-se no plano equatorial e formam, fundindo-se, uma estrutura que é a membrana plasmática das células filhas. Mais tarde, por deposição de fibrilas de celulose forma-se nessa região a parede celular. As vesículas golgianas contém elementos constituintes da parede celular, como pectinas . Esta citocinese e centrifuga, pois ocorre de dentro para fora, isto é, fundem-se primeiro as vesículas golgianas interiores e depois as mais exteriores de uma forma progressiva.

Sistema de Regulação

O ciclo celular deve ser algo extremamente regulado, falha em seus processos pode levar a célula a entrar em colapso e até gerar células tumorais. Por esse motivo, células eucarióticas apresentam uma série de mecanismos que impedem divisões celulares incontroláveis e reparam danos no material genético.

Complexo ciclinas-CDKs

A ativação das moléculas responsáveis pelo mecanismo de divisão ocorre por cinases dependentes de ciclina (CDK, do inglês Cyclin-Dependent Kinases).Como o nome sugere, as CDKs requerem a ligação de ciclinas - cujos níveis podem variar durante diferentes fases, em contraste com os níveis de CDKs,que permanecem constantes - para serem funcionais, sem a presença destas, não há atividade.Existem quatro classes essenciais de ciclinas (cada tipo formando um complexo equivalente ao se ligar à CDK correspondente):

  1. Ciclinas-G1, também chamadas de ciclinas D em mamíferos, se ligam às CDKs 4 e 6 e são responsáveis pelo controle de ciclinas-G1/S.
  2. Ciclinas-G1/S surgem no final da fase G1 e são rapidamente degradadas na fase S, são responsáveis pela passagem do ponto de regulação em G1.Nos vertebrados, corresponde à ciclina E conjugada com CDK2.
  3. Ciclinas-S contribuem para a duplicação cromossômica (através da ativação da DNA polimerase), permanecendo transcritas desde o final de G1 até a anáfase.
  4. Ciclinas-G2M ou -M estimulam a entrada na mitose.

Moduladores de CDKs

CAK

A ligação com ciclinas,todavia, não garante a ativação completa das CDKs e tampouco é o único mecanismo de controle do ciclo.Para que ocorra ativação completa da CDK, é necessário que uma CAK (CDK-activating kinase) fosforile um aminoácido em seu sítio ativo.Uma fosforilação dupla adicional regulada pela proteína cinase Wee1, porém, inibe a atividade da CDK, sendo preciso a desfosforilação por uma fosfatase conhecida como Cdc25 para a reativação.

Esses inibidores só são fosfatados, e consequentemente separados do complexo ciclina-CDK, quando todos os pontos de regulação da célula aprovam a continuidade do ciclo celular. Nesse caso, a cinase ativa fosfatará algum inibidor do continuamento do ciclo e, assim, dará continuidade ao ciclo celular.

APC/C

Para concluir o processo cíclico é preciso haver a descontinuidade de certas funções exercidas pelos complexos ciclina-CDKs.Em alguns casos, essa desativação acontece a partir da destruição de proteínas. O complexo promotor de anáfase ou ciclosomo (APC/C, de anaphase-promoting complex or cyclosome) catalisa a ubiquitinização de securinas, promovendo a entrada na anáfase, e das ciclinas-S e -M, completando a fase M, a partir da consequente desfosforilação de alvos do complexo ciclina-CDK.

Nesse processo, moléculas de ubiquitina livres no citoplasma são transferidos para para o elemento E1 do sistema de ubiquitinização. O elemento E2 consiste da proteína ubiquitina-transferase que é responsável por transferir a ubiquitina para a substância alvo, reconhecida pelo elemento E3. Proteínas com a adição de ubiquitinas são, comumente direcionados para proteossomas, que realizará a clivagem das ligações dissulfeto e consequentemente a fragmentação da proteína. O processo de ubitinização relaciona-se diretamente com a reciclagem de proteínas relacionadas com o ciclo celular, tendo um papel importante para o seu regulamento.

Pontos de Regulação

O Ciclo Celular é um processo extremamente complexo e de suma importância para a célula. Falhas no ciclo podem causar danos graves, como a morte celular, aploidia das células filhas, assim como o surgimento de células tumorais. Para que isso não ocorra os mecanismos envolvidos nos ciclo celular devem estar atuando em sinergia. Desse modo, a célula possui pontos de checagem para perceber quando pode ir para a próxima etapa do ciclo celular.

Existem três momentos em que os mecanismos de regulação atuam:

Referências

  1. «mitosis / cell division | Learn Science at Scitable». www.nature.com. Consultado em 4 de dezembro de 2016 
  2. "Ciclo Celular - Mitose" no site PortalBiologia.com.br acessado a 8 de outubro de 2009
  3. Lodish, Harvey; Arnold (1 de janeiro de 2000). «Overview of the Cell Cycle and Its Control» (em inglês)  A referência emprega parâmetros obsoletos |coautores= (ajuda)

Leitura Complementar

  1. Alberts A, Johnson A, Lewis J, Raff M, Roberts K,Walter P (2008) "Chapter 17".Molecular Biology of the Cell(5th ed.). New York: Garland Science ISBN 978-0-8153-4111-6