Morfismo (teoria das categorias)

Este artigo abordará o tema Morfismo (teoria das categorias), que ganhou relevância nos últimos anos devido ao seu impacto em diversos aspectos da sociedade. Dos avanços tecnológicos às mudanças na dinâmica de trabalho, Morfismo (teoria das categorias) tem gerado grande interesse e debate entre especialistas e a população em geral. Nesta linha, será analisada a influência de Morfismo (teoria das categorias) em diferentes contextos, bem como as suas implicações a curto e longo prazo. Perspectivas futuras sobre Morfismo (teoria das categorias) e como ele continuará a afetar nosso meio ambiente também serão exploradas.

Em muitos campos da matemática, morfismo se refere ao mapeamento de uma estrutura matemática a outra de forma que a estrutura é preservada. A noção de morfismo ocorre bastante na matemática contemporânea. Em álgebra, são transformações lineares, na teoria dos conjuntos são funções, na topologia são funções continuas e assim por diante.

O estudo de morfismos e de estruturas ( chamadas objetos ) nas quais eles são definidos, é central a teoria das categorias. Grande parte da terminologia de morfismos, assim como a intuição subjacente, vem de categorias concretas, onde os objetos são simplesmente conjuntos com alguma estrutura adicional, e morfismos são funções preservadoras de estruturas.

Tipos de morfismo

Definição

A categoria C consiste de duas classes, uma dos objetos e outra de morfismos. Existem duas operações que são definidas em qualquer morfismo, o domínio ( a fonte ) e o contra-domínio ( o alvo ).

Se um morfismo f tem X como domínio e Y como contra domínio, nos escrevermos f: X ->Y. Portanto morfismo é representado por uma flecha ( -> )que vai de seu domínio ao seu contra-domínio. A coleção de todos os morfismos de X a Y é denotada como hom(X, Y) e chamada de hom-set entre X e Y. Alguns autores escrevem Mor(X, Y). Note que o termo hom-set um termo um tanto impróprio já que a coleção de morfismos não é necessariamente um conjunto.

Para todo três objetos, X, Y e Z, existe uma operação binária hom(X, Y)×hom(Y, Z) chamada composição. A composta de f: X->Y e g:Y->Z é escrita como g°f, ou gf. A composição de morfismos é normalmente representada por um diagrama comutativo.

Morfismo satisfaz dois axiomas:

  1. Identidade: Para todo objeto X, existe um morfismo idx: X -> X chamado morfismo identidade em X, tal que

para todo morfismo f: A -> B nos temos idB ° f = f = f ° idA;

  1. Associatividade: h ° (g ° f) = (h ° g) ° f sempre que as operações são definidas.

Quando C é uma categoria concreta, a identidade do morfismo é apenas a identidade da função e composição é apenas uma composição de funções ordinária. Associatividade então está correta, pois composição de funções é também tem a propriedade de associatividade.

Note que no domínio e contra-domínio são de fato parte da informação que determina o morfismo. Por exemplo, na categoria de conjuntos, onde morfismo são funções, duas funções podem ser idênticas aos conjuntos de pares ordenados ( podem ter o mesmo escopo ), enquanto tendo diferentes contra-domínios. As duas funções são distintas do ponto de vista da teoria da categoria. Portanto, muitos autores requerem que as classes hom(X, Y) sejam disjuntas. Na prática, isso não é um problema pois se essa disjunção não for verdade, pode ser assegurada anexando o domínio e o contra-domínio aos morfismos, por exemplo, o segundo e o terceiro termo de uma tripla ordenada.

Alguns morfismos específicos

  • Monomorfismo: f: X -> Y é chamado de monomorfismo se f ° g1 = f ° g2 implica g1=g2 para todos os morfismos g1, g2: Z -> X. É também chamado de morfismo mónico.
    • O morfismo f tem uma inversa esquerda se existe um morfismo g: Y -> X, tal que g ° h = idX. A inversa esquerda g também é chamada retração de f. Morfismos com inversas esquerdas são sempre monomorfismos, mas a volta nem sempre é verdade em toda categoria; um monomorfismo pode não ter uma inversa esquerda.
    • O monomorfismo de divisão h: X -> Y é um monomorfismo que tem uma inversa esquerda g: Y -> X, tal que, g ° h = idX. Assim, h ° g : Y -> Y é idempotente, de forma que ( h ° g )² = h ° g.

Em categorias concretas, a função que tem uma inversa esquerda é injetora. Logo em categorias concretas, monomorfismos são geralmente, mas nem sempre, injetores. A condição de uma injeção é mais forte daquela do monomorfismo porém mais fraca daquela que seja um monomorfismo de divisão.

  • Epimorfismo: Dualmente, f: X -> Y é chamado epimorfismo se g1 ° f = g2 ° f implica g1 = g2 para todos os morfismos g1, g2: Y -> Z. Também é chamado de epi ou epic.
    • O morfismo f tem uma direita inversa se existe um morfismo g: Y -> X tal que f ° g = idY. A direita inversa de g é também chamada seção de f. Morfismos tendo a mesma inversa sempre são Epimorfismos, mas a volta nem sempre é verdade em toda categoria, pois um epimorfismo pode não ter uma direita-inversa.
    • Epimorfismo de divisão é um epimorfismo que possui uma direita-inversa. Note que se um monomorfismo f divide com a esquerda inversa g, então g é o epimorfismo de divisão com a direita inversa f.
    • Em categorias concretas a função que tem uma direita-inversa é sobrejetiva. Logo em categorias concretas, epimorfismos são normalmente, mas nem sempre, "sobrejetiva. A condição para ser uma sobrejetora é mais forte que aquela para ser um epimorfismo porém mais fraca do que a de ser um epimorfismo dividida. Na categoria de conjuntos, toda sobrejeção tem uma secção, resultado equivalente do axioma da escolha.
  • Bimorfismo é quando temos um morfismo que é tanto epimorfismo quanto monomorfismo ao mesmo tempo.
  • Isomorfismo: f: X -> Y é chamado de isomorfismo se existe um morfismo g: Y -> X tal que f ° g = idY e g ° f = idX. Se um morfismo é tanto esquerdo-inverso quanto direito-inverso, então ambos inversos são iguais. Logo f é um isomorfismo e g é simplesmente o inverso de f. Morfismos inversos, se existem, são únicos. O inverso de g também é um isomorfismo que tem f como seu inverso. Ambos objetos com um isomorfismo entre eles são considerados equivalentes ou isomorfos. Note que todo isomorfismo é um bimorfismo porém um bimorfismo não é necessariamente um isomorfismo. Por exemplo, na categoria de anéis comutativos a inclusão Z -> Q é um bimorfismo que não é um isomorfismo. Entretanto, qualquer morfismo que é tanto epimorfismo é um morfismo de divisão ou ambos sendo monomorfismo e morfismo de divisão, serão um isomorfismo. Uma categoria, como a de conjuntos, em qual todo bimorfismo é um isomorfismo é conhecida como uma categoria balanceada.
  • Endomorfismo: f X -> X é um endomorfismo de X. Um endomorfismo de divisão é um endomorfismo idempotente f se f admite a decomposição f = h ° g com g ° h = id. Em particular, o Envelope de Karoubi de categoria se divide cada morfismo idempotente.
  • Um Automorfismo é um morfismo que é tanto endomorfismo quanto isomorfismo.

Ligações externas

Referências

  • Mac Lane, Saunders (1998). Categories for the Working Mathematician (2nd ed.). Graduate Texts in Mathematics 5. Springer. ISBN 0-387-98403-8.
  • Barr, Michael & Wells, Charles, Category Theory for Computing Science, Prentice Hall, London, UK, 1990.
  • Jacobson, Nathan (2009), Basic algebra 2 (2nd ed.), Dover, ISBN 978-0-486-47187-7.